A comparative study of the reactivity of unsaturated triosmium clusters $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left\{\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mu-\mathrm{H})\right]$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left\{\mu_{3}-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}\right\}-\right.$ ($\mu-\mathrm{H})$] with ${ }^{t} \mathrm{BuNC}$

Arun K. Raha ${ }^{\text {a }}$, Shishir Ghosh ${ }^{\text {a }}$, Md. Manzurul Karim ${ }^{\text {a }}$, Derek A. Tocher ${ }^{\text {b }}$, Noorjahan Begum ${ }^{\text {c }}$, Ayesha Sharmin ${ }^{\text {d }}$, Edward Rosenberg ${ }^{\text {d }}$, Shariff E. Kabir ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
${ }^{\mathrm{b}}$ Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK
${ }^{\text {c }}$ Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
${ }^{\mathrm{d}}$ Department of Chemistry, The University of Montana, Missoula, MT 59812, USA

A R T I C L E I N F O

Article history:

Received 6 August 2008
Received in revised form 24 August 2008
Accepted 25 August 2008
Available online 31 August 2008

Keywords:

Unsaturated clusters
Diphosphine
2-Methylbenzothiazole
tert-Butyl isocyanide
X-ray structures

Abstract

Treatment of unsaturated $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left\{\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mu-\mathrm{H})\right]$ (2) with ${ }^{t} \mathrm{BuNC}$ at room temperature gives $\left.\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left(\mathrm{CNBu}^{t}\right)\right)\left\{\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mu-\mathrm{H})\right]$ (3) which on thermolysis in refluxing toluene furnishes $\left[\mathrm{Os}_{3}(\mathrm{CO})_{7}\left(\mathrm{CNBu}^{t}\right)\left\{\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCHP}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mu-\mathrm{H})_{2}\right]$ (4). Reaction of the labile complex $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{dppm})(\mathrm{NCMe})\right]$ (5) with ${ }^{t} \mathrm{BuNC}$ at room temperature affords the substitution product $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mu\right.$-dppm $\left.)\left(\mathrm{CNBu}^{t}\right)\right](\mathbf{6})$. Thermolysis of $\mathbf{6}$ in refluxing toluene gives 4. On the other hand, the reaction of unsaturated $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left\{\mu_{3}-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}\right\}(\mu-\mathrm{H})\right](7)$ with ${ }^{t} \mathrm{BuNC}$ yields the addition product $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{CNBu}^{t}\right)\left\{\mu-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}\right\}(\mu-\mathrm{H})\right]$ (8) which on decarbonylation in refluxing toluene gives unsaturated $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left(\mathrm{CNBu}^{t}\right)\left\{\mu_{3}-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}\right\}(\mu-\mathrm{H})\right]$ (9). Compound 9 reacts with PPh_{3} at room temperature to give the adduct $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CNBu}^{t}\right)\left\{\mu-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}(\mu-\mathrm{H})\right]\right.$ (10). Compound $\mathbf{8}$ exists as two isomers in solution whereas $\mathbf{1 0}$ occurs in four isomeric forms. The molecular structures of $\mathbf{3}, \mathbf{6}, \mathbf{8}$, and $\mathbf{1 0}$ have been determined by X-ray diffraction studies.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that coordinatively unsaturated transition metal cluster complexes, are much more reactive relative to their electron precise counterparts [1-3]. Electron-deficiency in these clusters makes them more vulnerable to attack by nucleophiles. Furthermore, the cluster-bound ligands within these unsaturated compounds frequently interact with other substrates to give new products that are not obtainable by conventional organic synthesis [4-6]. As a consequence, these electron-deficient triosmium clusters have attracted considerable interest for many years and their chemistry has been thoroughly investigated during the last decade to reveal their catalytic potential as well as applications in organic synthesis [4-27].

One of the most interesting unsaturated triosmium clusters $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left\{\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mu-\mathrm{H})\right]$ (2), derived from the decarbonylation of the decacarbonyl compound $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mu-\right.$ dppm)] (1), shows unique chemical properties and its reactivity with various ligands has been studied extensively (Scheme 1). For example, it reacts with CO to form first $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left\{\mu_{3}-\right.\right.$ $\left.\left.\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mu-\mathrm{H})\right]$ and finally the decacarbonyl compound

[^0]1 [7], with H_{2} to form $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mu-\mathrm{H})_{2}(\mu-\mathrm{dppm})\right.$] [8], with diphenylacetylene to form $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{PhC} \equiv \mathrm{CPh})(\mu-\mathrm{dppm})\right]$ [9], with phosphines $\left(\mathrm{PR}_{3}\right)$ to give $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left(\mathrm{PR}_{3}\right)\left\{\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mu-\mathrm{H})\right]$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left(\mathrm{PR}_{3}\right)_{2}(\mu\right.$-dppm) $][10,11]$, with $\mathrm{R}_{3} \mathrm{SiH}$ to form $\left[\mathrm{Os}_{3}\right.$ $\left.(\mathrm{CO})_{9}\left(\mathrm{SiR}_{3}\right)(\mu-\mathrm{dppm})(\mu-\mathrm{H})\right]$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{7}\left(\mathrm{SiR}_{3}\right)\left\{\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCH}_{2}-\right.\right.$ $\left.\left.\mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mu-\mathrm{H})_{2}\right][12]$, and with $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{PF}_{6}$ and HBF_{4} to form the cationic clusters $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left\{\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}\left(\mu-\mathrm{AuPPh}_{3}\right)\right.$ $(\mu-\mathrm{H})] \mathrm{PF}_{6}$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left\{\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mu-\mathrm{H})_{2}\right] \mathrm{BF}_{4}$, respectively [13].

On the other hand, the reactions of the electron-deficient benzoheterocyclic triosmium clusters of the type $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\right.$ $\left.(\mu-H)\left(\mu_{3}-\eta^{2}-L-H\right)\right] \quad(L=q u i n o l i n e, ~ q u i n o x a l i n e, ~ b e n z i m i d a z o l e, ~$ benzothiazole, benzoxazole) obtained from decarbonylation of the corresponding decacabonyls $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mu-\mathrm{H})\left(\mu-\eta^{2}-\mathrm{L}-\mathrm{H}\right)\right]$, with neutral nucleophiles such as phosphine and amines results in ligand addition at the metal core along with rearrangements whereas reactions with anionic nucleophiles such as hydride or carbanions results in attack at the carbocyclic ring [4-6,17-20,23] (Scheme 2).

The reactivity of the dihydrido unsaturated cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ $(\mu-\mathrm{H})_{2}$] with isocyanides have been reported to give the simple adduct $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{~L})(\mu-\mathrm{H})_{2}\right]\left(\mathrm{L}=\mathrm{MeNC},{ }^{t} \mathrm{BuNC}\right)$. Interestingly, ${ }^{\text {t }}$ BuNC adduct exists as two isomers in solution of which the trans isomer was crystallographically characterized [22]. In the light of these

Scheme 1.

Scheme 2.
results and as an extension of our previous studies on the reactivities of these electron-deficient triosmium clusters with various organic and inorganic ligands, we have now examined the reactivity of these clusters with ${ }^{t} \mathrm{BuNC}$ and studied the effect of isocyanidecarbonyl replacement on the reactivity of the resultant complexes. These studies reveal that isocyanide coordination impacts the thermal reactivity of these two types of unsaturated triosmium clusters differently.

2. Experimental

All reactions were performed under a nitrogen atmosphere. Reagent grade solvents were dried by the standard procedures and were freshly distilled prior to use. The clusters $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left\{\mu_{3}-\right.\right.$ $\left.\left.\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mu-\mathrm{H})\right](\mathbf{2})$ [7], [$\left.\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{dppm})(\mathrm{NCMe})\right]$ (5) [27] and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left\{\mu_{3}-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}\right\}(\mu-\mathrm{H})\right]$ (7) [20] were prepared according to the published procedures. Tert-butylisocyanide
was purchased from Strem Chemicals and used as received. Infrared spectra were recorded on a Shimadzu FTIR 8101 spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a Bruker DPX 400 instrument. All chemical shifts are reported in δ units with reference to the residual protons of the deuterated solvents for proton and to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ for ${ }^{31} \mathrm{P}$ chemical shifts. Elemental analyses were performed by Microanalytical Laboratories, University College London. Fast atom bombardment mass spectra were obtained on a JEOL SX-102 spectrometer using 3-nitrobenzyl alcohol as matrix and CsI as calibrant.

2.1. Reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left\{\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mu-\mathrm{H})\right]$ (2) with tert-butylisocyanide

To a dichloromethane solution of $2(100 \mathrm{mg}, 0.085 \mathrm{mmol})$ was added a solution $(10 \mathrm{~mL})$ of ${ }^{t} \mathrm{BuNC}(14 \mathrm{mg}, 0.17 \mathrm{mmol})$ in the same solvent over a period of 30 min . The reaction mixture was stirred at room temperature for a further 1.5 h during which time the color changed from green to yellow. The solvent was removed under reduced pressure and the residue separated by TLC on silica gel. Elution with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(7: 3, \mathrm{v} / \mathrm{v})$ developed one major and two very minor bands. The major band afforded $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{CN}-\right.$ $\left.\left.\left.\mathrm{Bu}^{t}\right)\right)\left\{\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mu-\mathrm{H})\right](3)(42 \mathrm{mg}, 39 \%)$ as yellow crystals after recrystallization from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $4^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{38} \mathrm{H}_{31} \mathrm{NO}_{8} \mathrm{Os}_{3} \mathrm{P}_{2}$: C, 36.16; $\mathrm{H}, 2.48 ; \mathrm{N}, 1.11$. Found: $\mathrm{C}, 36.45$; H, 2.69; N, 1.18\%. IR ($v \mathrm{CO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$): 2052 vs, 2015 vs, 1995 s , $1975 \mathrm{~s}, 1951 \mathrm{~m}, 1921 \mathrm{w} \mathrm{cm}^{-1}$, $\left(v \mathrm{CN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2178 \mathrm{~s} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.99(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}), 7.28-7.03(\mathrm{~m}, 15 \mathrm{H}), 6.46$ $(\mathrm{d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}),, 6.13(\mathrm{t}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 6.07(\mathrm{t}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz})$, $5.36(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}),-16.62(\mathrm{~d}, 1 \mathrm{H}$, $J=7.6 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 12.7(\mathrm{~d}, 1 \mathrm{P}, J=75.6 \mathrm{~Hz}),$, (d, 1P, J=75.6 Hz); MS (FAB): m/z $1263\left(\mathrm{M}^{+}\right)$.

2.2. Thermolysis of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left(\mathrm{CNBu}^{t}\right)\right)$

$\left.\left\{\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mu-\mathrm{H})\right]$ (3)
A toluene solution (20 mL) of $\mathbf{3}(30 \mathrm{mg}, 0.023 \mathrm{mmol})$ was heated to reflux for 2 h . The solvent was removed under reduced pressure and the residue separated by TLC on silica gel. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ developed one major and several very minor bands. The major band afforded $\left[\mathrm{Os}_{3}(\mathrm{CO})_{7}\left(\mathrm{CNBu}^{t}\right)\left\{\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCHP}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\} \quad(\mu-\mathrm{H})_{2}\right]$ (4) ($13 \mathrm{mg}, 45 \%$) as yellow crystals from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{NO}_{7} \mathrm{Os}_{3} \mathrm{P}_{2}$: C, 36.00; H, 2.53; $\mathrm{N}, 1.13$. Found: C, 36.32; H, 2.75; N, 1.22\%. IR ($v \mathrm{CO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$): $2057 \mathrm{~s}, 2008$ vs, 1987 m , $1977 \mathrm{sh}, 1950 \mathrm{~m}, 1938 \mathrm{~m} \mathrm{~cm}^{-1}$, $\left(\nu \mathrm{CN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2183 \mathrm{~s} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.66(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.51-6.96(\mathrm{~m}, 15 \mathrm{H}), 6.84(\mathrm{t}$, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.72(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.06(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 5.10$ (dd, $1 \mathrm{H}, J=11.7,4.0 \mathrm{~Hz}), 1.41(\mathrm{~s}, 9 \mathrm{H}),-13.86(\mathrm{~d}, 1 \mathrm{H}, J=12.4 \mathrm{~Hz})$, $-16.85(\mathrm{~d}, 1 \mathrm{H}, J=11.2,4.8 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-13.7(\mathrm{~d}$, $1 \mathrm{P}, J=53.5 \mathrm{~Hz}$), $-61.8(\mathrm{~d}, 1 \mathrm{P}, J=53.5 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{FAB}): m / z 1235\left(\mathrm{M}^{+}\right)$.

2.3. Reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mu\right.$-dppm $\left.)(\mathrm{NCMe})\right]$ (5) with tert-butylisocyanide

A mixture $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{dppm})(\mathrm{NCMe})\right](5)(80 \mathrm{mg}, 0.064 \mathrm{mmol})$ and ${ }^{t} \mathrm{BuNC}(7 \mathrm{mg}, 0.072 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ was stirred at room temperature for 16 h . The solvent was removed in vacuo and the residue separated by TLC on silica gel. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4: 1, \mathrm{v} / \mathrm{v})$ gave three bands. The first band afforded $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mu\right.$-dppm $\left.)\right](\mathbf{1})(7 \mathrm{mg}, 9 \%)$ while the second band yielded $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{dppm})\left(\mathrm{CNBu}^{t}\right)\right](\mathbf{6})(42 \mathrm{mg}, 51 \%)$ as orange crystals after recrystallization from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{36} \mathrm{H}_{23} \mathrm{NO}_{9} \mathrm{Os}_{3} \mathrm{P}_{2}$: C, 36.30; H, 2.42; N, 1.09. Found: C, 36.66; H, 2.65; N, 1.15\%. IR (vCO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): $2053 \mathrm{~s}, 2012 \mathrm{~s}, 1998$ vs, 1980 vs, $1950 \mathrm{~m}, 1930 \mathrm{~m} \mathrm{~cm}^{-1}$, $\left(v \mathrm{CN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2177 \mathrm{~m} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}\right): \delta 7.66-7.19(\mathrm{~m}, 20 \mathrm{H}), 5.05(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{31} \mathrm{P}-$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-27.3(\mathrm{~s}) ; \mathrm{MS}(\mathrm{FAB}): m / z 1291\left(\mathrm{M}^{+}\right)$.

2.4. Thermolysis of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{dppm})\left(\mathrm{CNBu}^{t}\right)\right]$ (6)

A toluene solution (10 mL) of $\mathbf{6}(25 \mathrm{mg}, 0.019 \mathrm{mmol})$ was refluxed for 3 h . The solvent was removed under reduced pressure and the residue separated by TLC on silica gel. Elution with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(7: 3, \mathrm{v} / \mathrm{v})$ gave two bands. The major band was identified as $\mathbf{4}(12 \mathrm{mg}, 50 \%)$ and the minor band as unconsumed $\mathbf{6}(5 \mathrm{mg})$.

2.5. Reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left\{\mu_{3}-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}\right\}(\mu-H)\right]$ (7) with ter-butylisocyanide

A dichloromethane solution $(20 \mathrm{~mL})$ of $7(50 \mathrm{mg}, 0.051 \mathrm{mmol})$ and ${ }^{t}$ BuNC ($14 \mathrm{mg}, 0.17 \mathrm{mmol}$) was stirred at room temperature for 30 min during which time the color changed from green to yellow. The solvent was removed under reduced pressure and the residue separated by TLC on silica gel. Elution with hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7: 3$, v / v) developed one band which afforded $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{CNBu}^{t}\right)\left\{\mu-\eta^{2}-\right.\right.$ $\left.\left.\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}\right\}(\mu-\mathrm{H})\right](\mathbf{8})(45 \mathrm{mg}, 85 \%)$ as yellow crystals from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-4{ }^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{~S}$: $\mathrm{C}, 25.04 ; \mathrm{H}$, 1.53; N, 2.65. Found: C, 25.24; H, 1.72; N, 2.82\%. IR (vCO, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 2075 w, 2043 vs, 2029 vs, 1979 vs, cm^{-1}, (vCN, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2181$ $\mathrm{s} \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ major isomer (95\%): $\delta 7.97$ (dd, 1 H , $J=7.0,0.6 \mathrm{~Hz}), 7.16(\mathrm{dd}, 1 \mathrm{H}, J=7.0,0.6 \mathrm{~Hz}), 6.97(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $3.0(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}),-11.88(\mathrm{~s}, 1 \mathrm{H})$; MS (FAB): m/z 1056.

2.6. Thermolysis of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{CNBu}^{t}\right)\left\{\mu-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}\right\}(\mu-H)\right]$ (8)

A toluene solution (10 mL) of $\mathbf{8}(25 \mathrm{mg}, 0.024 \mathrm{mmol})$ was heated to reflux for 3 h during which time the color changed to green. Work up followed by chromatographic separation as above afforded unreacted $8(4 \mathrm{mg})$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left(\mathrm{CNBu}^{t}\right)\left\{\mu_{3}-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\right.\right.$ $\mathrm{Me}) \mathrm{NS}\}(\mu-\mathrm{H})](\mathbf{9})\left(15 \mathrm{mg}\right.$, \%) as green crystals from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ by slow evaporation of the solvents as room temperature. Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Os}_{3} \mathrm{~S}$: C, 25.04; $\mathrm{H}, 1.53$; $\mathrm{N}, 2.65$. Found: C, $25.24 ; \mathrm{H}, 1.72 ; \mathrm{N}, 2.82 \%$. IR ($v \mathrm{CO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$): 2059 vs, 2015 vs, 1993 vs, $1978 \mathrm{~s}, \mathrm{~cm}^{-1}$, $\left(\nu \mathrm{CN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2164 \mathrm{~s} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ 8.43(m, 1H), $8.35(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H})$, -12.93 (s, 1H); MS (FAB): m/z 1028.

2.7. Reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left(\mathrm{CNBu}^{t}\right)\left\{\mu_{3}-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}\right\}(\mu-H)\right]$ (9)

 with PPh_{3}A dichloromethane solution $(10 \mathrm{~mL})$ of $9(10 \mathrm{mg}, 0.010 \mathrm{mmol})$ and triphenylphosphine ($4 \mathrm{mg}, 0.015 \mathrm{mmol}$) was stirred at room temperature for 30 min . The color changed from green to yellow. The solvent was removed under reduced pressure and the residue separated by TLC on silica gel. Elution with hexane developed one major and two very minor bands. The major band afforded [$\mathrm{Os}_{3}-$ $(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CNBu}^{t}\right)\left\{\mu-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}(\mu-\mathrm{H})\right] \quad(10) \quad(7 \mathrm{mg}, 56 \%)$ as yellow crystals after recrystallization from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $4^{\circ} \mathrm{C}$. Anal. Calc. for $\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Os}_{3} \mathrm{PS}$: C, $36.32 ; \mathrm{H}, 2.43 ; \mathrm{N}, 2.17$. Found: C, 36.65; H, 2.75; N, 2.32\% IR ($v \mathrm{CO}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$): $2051 \mathrm{w}, 2022$ s, $1987 \mathrm{~s}, 1960 \mathrm{~m}, 1936 \mathrm{w}, 1915 \mathrm{w} \mathrm{cm}^{-1}$, $\left(v \mathrm{CN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2178$ $\mathrm{s} \mathrm{cm}{ }^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ for major isomer (89\%): $\delta 7.35(\mathrm{~m}, 1 \mathrm{H})$, 7.27-7.08 (m, 15H), $6.86(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.39(\mathrm{t}, 1 \mathrm{H}$, $J=7.4 \mathrm{~Hz}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}),-11.15(\mathrm{~d}, 1 \mathrm{H}, J=16.4 \mathrm{~Hz})$; ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 12.1$ (s); MS (FAB): m/z 1289.

2.8. Reaction of $\mathbf{9}$ with CO

Carbon monoxide gas was bubbled through a CDCl_{3} solution of $9(15 \mathrm{mg}, 0.015 \mathrm{mmol})$ in an NMR tube for 2 min . The ${ }^{1} \mathrm{H}$ NMR spectrum indicated complete conversion to cluster 8.

2.9. X-ray structure determinations

Single crystals of 3, 6, $\mathbf{8}$ and $\mathbf{1 0}$ suitable for X-ray diffraction were grown by slow diffusion of hexane into a dichloromethane solution at $4^{\circ} \mathrm{C}$. All geometric and crystallographic data for 3, $\mathbf{6}$, $\mathbf{8}$ and $\mathbf{1 0}$ were collected at 150 K on a Bruker SMART APEX CCD diffractometer using Mo $K \alpha$ radiation ($\lambda=0.71073 \AA$). Data reduction and integration was carried out with SAINT+ and absorption corrections were applied using the program SADABS [28]. Structures were solved by direct methods and developed using alternating cycles of least-squares refinement and difference-Fourier synthesis. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in the calculated positions and their thermal parameters linked to those of the atoms to which they were attached (riding model). The SHELXTL PLUS V6.10 program package was used for structure solution and refinement [29]. Final difference maps did not show any residual electron density of stereochemical significance. The details of the data collection and structure refinement are given in Table 1.

3. Results and discussion

3.1. Reaction of electron-deficient $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left\{\mu_{3}-\right.\right.$ $\left.\left.\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mu-\mathrm{H})\right]$ (2) with ${ }^{{ }^{t} \mathrm{BuNC}}$

Reaction of the unsaturated cluster $\mathbf{2}$ with ${ }^{\text {t }} \mathrm{BuNC}$ at room temperature, followed by the usual workup and chromatographic separation, furnishes $\left.\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left(\mathrm{CNBu}^{t}\right)\right)\left\{\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}\left(\mathrm{Ph}^{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mu-\mathrm{H})\right]$ (3) in 39% yield which decarbonylates at $110{ }^{\circ} \mathrm{C}$ to give $\left[\mathrm{Os}_{3}\right.$ $\left.(\mathrm{CO})_{7}\left(\mathrm{CNBu}^{t}\right)\left\{\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCHP}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mu-\mathrm{H})_{2}\right]$ (4) in 45% yield (Scheme 3). Compound $\mathbf{3}$ is an adduct of $\mathbf{2}$ and ${ }^{t}$ BuNC whereas
compound $\mathbf{4}$ represents a rare example in which activation of both aromatic and aliphatic $\mathrm{C}-\mathrm{H}$ bonds has occurred. There is no evidence for the formation of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left(\mathrm{CNBu}^{t}\right)_{2}(\mu-\mathrm{dppm})\right]$ although such a disubstituted product was expected by further addition of second molecule of ${ }^{t} \mathrm{BuNC}$ ligand to $\mathbf{3}$ followed by reductive elimination of the orthometallated phenyl ring of the dppm ligand. Both compounds have been characterized by $\mathrm{IR},{ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR, mass spectroscopy and elemental analysis together with single crystal X-ray diffraction studies for 3.

An ORTEP diagram of the molecular structure of $\mathbf{3}$ is depicted in Fig. 1, and selected bond distances and angles are listed in the caption. Compound $\mathbf{3}$ consists of an approximate isosceles triangle of osmium atoms with one long $\{\operatorname{Os}(1)-\mathrm{Os}(3)=3.0546(3) \AA$ \} and two shorter bonds $\{\operatorname{Os}(1)-\mathrm{Os}(2)=2.8961(3)$ and $\mathrm{Os}(2)-$ $\mathrm{Os}(3)=2.8714(3) \AA\}$. The eight carbonyl ligands are all terminal, three of which are bonded to each of $\mathrm{Os}(2)$ and $\mathrm{Os}(3)$ while the other two bonded to $\mathrm{Os}(1)$. The ${ }^{t} \mathrm{BuNC}$ ligand is axially coordinated to $\mathrm{Os}(1)$ and lies on the opposite side of the Os_{3} plane with respect to the $\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}$ ligand. The addition of this ligand to the unsaturated cluster 2 changes the coordination mode of the orthometallated phenyl ring. The bridging orthometallated phenyl group in 2 now adopts a terminal axial coordination site on $\mathrm{Os}(3)$ in 3. As expected, the phosphorus atoms of the $\mu_{3^{-}}$ $\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}$ ligand also occupy axial coordination sites to facilitate the coordination of one of the phenyl groups of this ligand to $\mathrm{Os}(3)$. The hydride ligand was not located in the X-ray analysis but is believed to bridge across the $\mathrm{Os}(1)-\mathrm{Os}(3)$ edge which is consistent with the lengthening of this bond and also with the opening out of the CO ligands along this edge $\{C(2)-O s(1)-$ $\operatorname{Os}(3)=117.65(13) \quad$ and $\left.\quad C(9)-\operatorname{Os}(3)-\operatorname{Os}(1)=111.60(14)^{\circ}\right\}$. The $\mathrm{Os}(3)-\mathrm{C}(32)$ and $\mathrm{Os}(1)-\mathrm{C}(1)$ bond distances in 3 \{2.170(4) and

Table 1
Crystallographic data for 3, 6, $\mathbf{8}$ and 10

	3	6	8	10
Empirical formula	$\mathrm{C}_{41} \mathrm{H}_{37} \mathrm{NO}_{8} \mathrm{Os}_{3} \mathrm{P}_{2}$	$\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{NO}_{9} \mathrm{Os}_{3} \mathrm{P}_{2}$	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Os}_{3} \mathrm{~S}$	$\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Os}_{3} \mathrm{PS}$
Formula weight (\AA)	1304.26	1290.19	1055.03	1289.21
Temperature (K)	150(2)	293(2)	150(2)	293(2)
Wavelength (\AA)	0.71073	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Triclinic	Monoclinic	Triclinic
Space group	C2/c	$P \overline{1}$	$P 2_{1} / \mathrm{c}$	$P \overline{1}$
Unit cell dimensions				
$a(\AA)$	21.4807(14)	11.388(3)	15.668(4)	15.3857(14)
b (\AA)	32.796(2)	11.807(3)	9.122(3)	15.7811(14)
$c(A)$	11.7777(8)	14.889(4)	20.026(6)	17.1195(15)
$\alpha\left({ }^{\circ}\right)$	90	83.844(4)	90	92.651(2)
$\beta\left({ }^{\circ}\right)$	100.8740(10)	81.697(4)	112.798(4)	102.657(2)
$\gamma\left({ }^{\circ}\right)$	90	89.544(4)	90	101.664(2)
Volume (\AA^{3})	8148.1(9)	1969.5(8)	2638.5(13)	3954.0(6)
Z	8	2	4	4
Density (calculated) ($\mathrm{Mg} / \mathrm{m}^{3}$)	2.126	2.176	2.656	2.166
Absorption coefficient (mm^{-1})	9.464	9.789	14.543	9.763
$F(000)$	4896	1204	1912	2408
Crystal size (mm)	$0.38 \times 0.22 \times 0.20$	$0.28 \times 0.12 \times 0.08$	$0.32 \times 0.14 \times 0.08$	$0.18 \times 0.05 \times 0.03$
θ Range for data collection (${ }^{\circ}$)	2.48-28.33	2.50-28.28	2.64-28.33	1.22 to 28.29
Index ranges	$\begin{aligned} & -27 \leqslant h \leqslant 27, \\ & -43 \leqslant k \leqslant 43, \\ & -15 \leqslant 1 \leqslant 15 \end{aligned}$	$\begin{aligned} & -14 \leqslant h \leqslant 15, \\ & -15 \leqslant k \leqslant 15, \\ & -19 \leqslant 1 \leqslant 19 \end{aligned}$	$\begin{aligned} & -20 \leqslant h \leqslant 20, \\ & -12 \leqslant k \leqslant 12, \\ & -26 \leqslant 1 \leqslant 25 \end{aligned}$	$\begin{aligned} & -20 \leqslant h \leqslant 20, \\ & -20 \leqslant k \leqslant 20, \\ & -22 \leqslant l \leqslant 22 \end{aligned}$
Reflections collected	34902	17021	21818	34561
Independent reflections	9749 [$\left.R_{\text {int }}=0.0378\right]$	9020 [$\left.R_{\text {int }}=0.0399\right]$	6290 [$\left.R_{\text {int }}=0.0592\right]$	18147 [$R_{\text {int }}=0.0523$]
Refinement method	Full-matrix least-squares on F^{2}			
Data/restraints/parameters	9749/0/516	9020/0/488	6290/0/339	18147/0/908
Goodness-of-fit on F^{2}	0.859	0.932	1.094	0.920
Final R indices [$I>2 \sigma(I)]$	$\begin{aligned} & R_{1}=0.0261, \\ & w R_{2}=0.0696 \end{aligned}$	$\begin{aligned} & R_{1}=0.0383 \\ & w R_{2}=0.0959 \end{aligned}$	$\begin{aligned} & R_{1}=0.0411, \\ & w R_{2}=0.0983 \end{aligned}$	$\begin{aligned} & R_{1}=0.0470 \\ & w R_{2}=0.0991 \end{aligned}$
R indices (all data)	$\begin{aligned} & R_{1}=0.0314, \\ & w R_{2}=0.0727 \end{aligned}$	$\begin{aligned} & R_{1}=0.0458 \\ & w R_{2}=0.1002 \end{aligned}$	$\begin{aligned} & R_{1}=0.0447, \\ & w R_{2}=0.1003 \end{aligned}$	$\begin{aligned} & R_{1}=0.0800 \\ & w R_{2}=0.1225 \end{aligned}$
Largest difference in peak and hole (e \AA^{-3})	1.497 and -1.139	3.117 and -1.707	5.399 and -1.925	2.779 and -2.324

1

5

6

2

3

4

Scheme 3.
$2.021(4) \AA$ \} are quite similar to those observed in related complexes $[10,30$] while the $\mathrm{Os}-\mathrm{P}$ and $\mathrm{C}-\mathrm{N}$ bond distances are within the range found in literature [11,30-33].

The spectroscopic data for $\mathbf{3}$ are consistent with the solid-state structure. The infrared spectrum shows the v_{CN} absorption band at $2178 \mathrm{~cm}^{-1}$, which is characteristic of a terminally coordinated isocyanide ligand [34]. The FAB mass spectrum shows the parent molecular ion peak at $m / z 1263$ and peaks due to sequential loss of eight carbonyl groups. The hydride region of the ${ }^{1} \mathrm{H}$ NMR spectrum shows a doublet at $\delta-16.62\left(J_{\mathrm{P}-\mathrm{H}}=7.6 \mathrm{~Hz}\right)$ indicating the presence of a hydride coupled to a phosphorus atom while the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum displays two doublet resonances at δ $12.7\left(J_{\mathrm{P}-\mathrm{P}}=75.6 \mathrm{~Hz},\right)$ and $16.5\left(J_{\mathrm{P}-\mathrm{P}}=75.6 \mathrm{~Hz}\right)$ due to nonequivalent phosphorus atoms of the dppm ligand.

Since we were unable to grow single crystals of 4 in different solvent systems under different conditions, its molecular structure was deduced from spectroscopic data and elemental analysis. The infrared spectrum shows a strong absorption band at $2183 \mathrm{~cm}^{-1}$ for the terminally coordinated ${ }^{t}$ BuNC ligand [34] while the carbonyl region of the spectrum is very similar to that observed for $\left[\mathrm{Os}_{3}(\mathrm{CO})_{7}(\mathrm{CNPr})\left\{\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCHP}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mu-\mathrm{H})_{2}\right] \quad[30] \quad$ which indicates that they have similar distribution of carbonyl ligands. The FAB mass spectrum exhibits the parent molecular ion peak at $m / z 1235$ and peaks due to successive loss of seven carbonyl
groups which is consistent with our assigned formulation. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ displays two sets of hydride resonances at δ -13.86 and -16.85 indicating that intramolecular activation of two C-H bonds has taken place. In addition to the usual aromatic resonances for phenyl protons, the aliphatic region of the spectrum shows a doublet of doublets at $\delta 5.10\left(J_{\mathrm{P}-\mathrm{H}}=11.7,4.0 \mathrm{~Hz}\right)$ with a relative intensity of 1 H for the methylene proton of the dppm ligand and a singlet at $\delta 1.41$ (integrated to 9 H) due to the methyl protons of the ${ }^{t} \mathrm{BuNC}$ ligand which suggest that one of the methylene protons of the dppm ligand has been activated. On the other hand, the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows two doublets at $\delta-13.7$ $\left(J_{\mathrm{P}-\mathrm{P}}=53.5 \mathrm{~Hz}\right)$ and $-61.8\left(J_{\mathrm{P}-\mathrm{P}}=53.5 \mathrm{~Hz}\right)$ for the phosphorus atoms of the dppm ligand which is in accord with our proposed structure.

3.2. Reaction of the labile complex $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mu-d p p m)(\mathrm{NCMe})\right]$ (5)

 with ${ }^{t} B u N C$In a related study, we carried out the reaction of the labile acetonitrile complex $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{dppm})(\mathrm{NCMe})\right]$ (5) derived from the decacarbonyl compound $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mu\right.$-dppm) $]$ (1) with ${ }^{t} \mathrm{BuNC}$ to observe the effect of isocyanide-carbonyl replacement at the unique metal of $\mathbf{1}$. Compound $\mathbf{5}$ reacts with ${ }^{t} \mathrm{BuNC}$ at room temperature to give the simple substitution product $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\right.$

Fig. 1. Molecular structure of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left\{\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4}\right\}(\mu-\mathrm{H})\right]$ (3) showing 50\% probability thermal ellipsoids. Hydrogen atoms are omitted for clarity. Selected bond lengths $(\AA \AA)$ and angles $\left({ }^{\circ}\right): ~ \mathrm{Os}(1)-\mathrm{Os}(2) 2.8961(3), \mathrm{Os}(1)-\mathrm{Os}(3) 3.0546(3)$, $\mathrm{Os}(2)-\mathrm{Os}(3) 2.8714(3), \mathrm{Os}(1)-\mathrm{C}(1) 2.021(4), \mathrm{Os}(3)-\mathrm{C}(32) 2.170(4), \mathrm{Os}(1)-\mathrm{P}(1)$ $2.3837(11), \mathrm{Os}(2)-\mathrm{P}(2) 2.3575(11), \mathrm{C}(1)-\mathrm{N}(1) 1.153(5), \mathrm{C}(10)-\mathrm{N}(1) 1.467(5), \mathrm{C}(3)-$ $\mathrm{Os}(1)-\mathrm{Os}(3) 138.92(13), \mathrm{C}(2)-\mathrm{Os}(1)-\mathrm{Os}(3) 117.65(13), \mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{Os}(2) 89.03(3)$, $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3) 57.627(6), \mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{Os}(1) 63.959(5), \mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{Os}(1)$ 58.413(6), $\mathrm{P}(2)-\mathrm{Os}(2)-\mathrm{Os}(1) 88.63(3), \mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{Os}(2) 93.69(11), \mathrm{C}(9)-\mathrm{Os}(3)-$ $\mathrm{Os}(1)$ 111.60(14), C(32)-Os(3)-Os(1) 96.17(11), C(7)-Os(3)-Os(1) 149.69(15), $\mathrm{C}(8)-\mathrm{Os}(3)-\mathrm{Os}(1)$ 88.93(12), P(1)-C(14)-P(2) 107.6(2).
$\left(\mu\right.$-dppm) $\left.\left(\mathrm{CNBu}^{t}\right)\right](\mathbf{6})$ in which the MeCN group is replaced by the ${ }^{t}$ BuNC in 51% yield. Decarbonylation of $\mathbf{6}$ at $110^{\circ} \mathrm{C}$ again furnishes 4 in 51% yield (Scheme 3). The structure of compound $\mathbf{6}$ is similar to the $\mathrm{PhCH}_{2} \mathrm{NC}$ analog $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)(\mu\right.$-dppm $)$] [30]. An ORTEP drawing of the molecular structure of $\mathbf{6}$ is shown in Fig. 2 and selected bond distances and angles are listed in the caption. The molecule consists of a trimetallic core of three osmium atoms, nine terminal carbonyl groups, a bridging dppm ligand and a terminal ${ }^{\text {t }}$ BuNC ligand. The three osmium atoms form an isosceles triangle with two long $\{\mathrm{Os}(1)-\mathrm{Os}(3)=2.8772(6)$ and $\mathrm{Os}(2)-$ $\operatorname{Os}(3)=2.8703(7) \AA\}$ and one short $\{\operatorname{Os}(1)-\operatorname{Os}(2)=2.8514(6) \AA\}$ metal-metal edge. Each osmium atom is coordinated by three car-
 The bridging dppm ligand lie in the equatorial plane and the Os-P bond lengths are very similar to those observed in [Os_{3} $\left.(\mathrm{CO})_{9}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)(\mu-\mathrm{dppm})\right]$ [30]. The $\mathrm{Os}(2)-\mathrm{C}(10)$ bond distance $\{2.034(6) \AA\}$ and the $\mathrm{C}-\mathrm{N}$ bond distances within the ${ }^{t} \mathrm{BuNC}$ ligand $\{\mathrm{C}(11)-\mathrm{N}(1)=1.458(8), \mathrm{C}(10)-\mathrm{N}(1)=1.149(8) \AA$ A $\}$ are also similar to those found in $\mathbf{3}$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)(\mu-\mathrm{dppm})\right]$ [30].

The infrared spectrum of compound $\mathbf{6}$ shows a characteristic absorption band for a terminally coordinated isocyanide ligand at $2178 \mathrm{~cm}^{-1}$ [34] while the carbonyl region of the spectrum is very similar to that of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{CNCH}_{2} \mathrm{Ph}\right)(\mu\right.$-dppm $\left.)\right]$ [30]. In addition to the usual aromatic resonances for phenyl protons, the ${ }^{1} \mathrm{H}$ NMR spectrum shows a multiplet at $\delta 5.05$ for the methylene protons of the dppm ligand while the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum displays a singlet at $\delta-27.3$ for the phosphorus atoms of the dppm ligand. The FAB mass spectrum shows the parent molecular ion peak at $m / z 1291$ and peaks due to stepwise loss of nine carbonyl ligands which also supports the solid-state structure.

Fig. 2. Molecular structure of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mu-\mathrm{dppm})\left(\mathrm{CNBu}^{t}\right)\right](\mathbf{6})$ showing 50% probability thermal ellipsoids. Hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: $\mathrm{Os}(1)-\mathrm{Os}(2) 2.8514(6), \mathrm{Os}(1)-\mathrm{Os}(3) 2.8772(6), \mathrm{Os}(2)-$ $\mathrm{Os}(3) \quad 2.8703(7), \quad \mathrm{Os}(2)-\mathrm{C}(10) \quad 2.034(6), \quad \mathrm{Os}(1)-\mathrm{P}(1) \quad 2.3105(17), \quad \mathrm{Os}(3)-\mathrm{P}(2)$ $2.3424(17), \mathrm{C}(11)-\mathrm{N}(1) 1.458(8), \mathrm{C}(10)-\mathrm{N}(1) 1.149(8), \mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{Os}(3) 92.21(4)$, $\mathrm{P}(2)-\mathrm{Os}(3)-\mathrm{Os}(1) \quad 93.90(4), \quad \mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3) \quad 60.137(18), \quad \mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$ $60.379(14), \mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{Os}(1) \quad 59.484(10), \mathrm{C}(10)-\mathrm{N}(1)-\mathrm{N}(11) \quad 178.0(7), \mathrm{P}(1)-$ $\mathrm{C}(15)-\mathrm{P}(2)$ 117.5(4).

3.3. Reaction of the unsaturated 2-methylbenzothiazole triosmium cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left\{\mu_{3}-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}\right\}(\mu-\mathrm{H})\right]$ (7) with ${ }^{\mathrm{t}} \mathrm{BuNC}$

The unsaturated cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left\{\mu_{3}-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}\right\}(\mu-\mathrm{H})\right]$ (7) reacts with ${ }^{t} \mathrm{BuNC}$ at room temperature to furnish the adduct $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{CNBu}^{t}\right)\left\{\mu-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}\right\}(\mu-\mathrm{H})\right]$ (8) which decarbonylates at $110^{\circ} \mathrm{C}$ to give unsaturated cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}(\mathrm{CN}-\right.$ $\left.\left.\mathrm{Bu}^{t}\right)\left\{\mu_{3}-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}\right\}(\mu-\mathrm{H})\right]$ (9) (Scheme 4). Compounds 8 and 9 have been characterized by IR, ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR, mass spectroscopy and elemental analysis together with a single crystal X-ray diffraction study for 8 .

An ORTEP drawing of the molecular structure of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}(\mathrm{CN}-\right.$ $\left.\left.\mathrm{Bu}^{t}\right)\left\{\mu-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}\right\}(\mu-\mathrm{H})\right]$ (8) is depicted in Fig. 3 and selected bond distances and angles are listed in the caption. The molecule consists of an isosceles triangle of osmium atoms with one short $\{\mathrm{Os}(1)-\mathrm{Os}(3)=2.8910(7) \AA$ and two longer bonds $\{\mathrm{Os}(1)-\mathrm{Os}(2)=2.9136(8)$ and $\mathrm{Os}(2)-\mathrm{Os}(3)=2.9150(8) \AA$ § , each of which is bonded to three terminal carbonyl groups. The hydride ligand is located crystallographically but not refined. Both the heterocyclic ligand and hydride bridge the same metal-metal edge. The ${ }^{t} \mathrm{BuNC}$ ligand is axially coordinated to $\mathrm{Os}(1)$, with the $\mathrm{Os}(1)-$ $C(10)$ bond distance $\{2.039(7) \AA \AA\}$ very similar to those found in 3 and 6 and oriented on the opposite side of the Os_{3} plane relative to the heterocyclic ligand. The heterocyclic ligand is roughly perpendicular to the Os_{3} plane with the $\mathrm{C}(15)-\mathrm{Os}(2)-\mathrm{Os}(3)$ and $\mathrm{N}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$ angles being $84.52(18)$ and $84.50(16)^{\circ}$, respectively. The dihedral angle between the Os_{3} plane and the mean plane of the heterocyclic ligand is 98.4°. The $\mathrm{Os}(2)-\mathrm{C}(15)$ and $\mathrm{Os}(3)-\mathrm{N}(1)$ distances $\{2.148(7)$ and $2.174(6) \AA$ \} are within the range reported for related compounds [17-22,35-38].

10

Scheme 4.

Fig. 3. Molecular structure of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mathrm{CNBu}^{t}\right)\left\{\mu-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}\right\}(\mu-\mathrm{H})\right]$ (8) showing 50% probability thermal ellipsoids. Hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): ~ \mathrm{Os}(1)-\mathrm{Os}(2) 2.9136(8), \mathrm{Os}(1)-\mathrm{Os}(3)$ 2.8910(7), $\operatorname{Os}(2)-\operatorname{Os}(3) 2.9150(8), \operatorname{Os}(1)-C(10) 2.039(7), \operatorname{Os}(2)-C(15) 2.148(7)$, $\mathrm{Os}(3)-\mathrm{N}(1) 2.174(6), \mathrm{C}(11)-\mathrm{N}(2) 1.453(10), \mathrm{C}(10)-\mathrm{N}(2) 1.144(10), \mathrm{C}(6)-\mathrm{Os}(2)-$ $\mathrm{Os}(3) 119.0(2), \mathrm{C}(15)-\mathrm{Os}(2)-\mathrm{Os}(3) 84.52(18), \mathrm{C}(7)-\mathrm{Os}(3)-\mathrm{Os}(2) 123.3(2)$, $\mathrm{Os}(3)-$ $\mathrm{Os}(1)-\mathrm{Os}(2) \quad 60.289(17), \quad \mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3) \quad 59.471(10), \quad \mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$ $60.24(2), \mathrm{N}(1)-\mathrm{Os}(3)-\mathrm{Os}(2) 84.50(16), \mathrm{C}(10)-\mathrm{N}(2)-\mathrm{C}(11) 172.6(7)$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$ shows one major isomer (relative intensity $=0.95$) in solution with a hydride signal at -11.88 . In addition a second hydride resonance is observed at -12.07 (relative intensity $=0.05$). The major isomer $8 \mathbf{a}$ is assumed to have the same structure as found in the solid-state, while the minor isomer $\mathbf{8 b}$ has an alternative position for the isocyanide ligand (Chart 1) [27]. The infrared spectrum shows the characteristic v_{CN} absorption band at $2178 \mathrm{~cm}^{-1}$ whereas the FAB mass spectrum exhibits
the parent molecular ion peak at $m / z 1056$ and peaks due to sequential loss of nine carbonyl groups which is consistent with the solid-state structure.

Single crystals of compound 9 could not be obtained after several attempts, so its molecular structure was deduced from elemental analysis and spectroscopic data. The infrared spectrum exhibits the v_{CN} absorption band at $2164 \mathrm{~cm}^{-1}$ which is characteristic of a terminally coordinated isocyanide ligand [34] while the FAB mass spectrum exhibits the parent molecular ion peak at $m / z 1028$ together with fragment peaks due to successive loss of eight carbonyl groups which is in accord with our proposed formulation. The ${ }^{1} \mathrm{H}$ NMR spectrum exhibits a hydride resonance at δ -12.93 while the aromatic region of the spectrum displays three equal intensity multiplets at $\delta 8.43,8.35$ and 6.94 due to the ring protons of the heterocylic ligand. In addition to this, the aliphatic region shows two singlets at $\delta 2.96$ and 1.41 with a relative intensity of $1: 3$ for the methyl protons of the heterocyclic ligand and the ${ }^{t}$ BuNC ligand respectively which are consistent with our proposed structure.

3.4. Reaction of the unsaturated cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left(\mathrm{CNBu}^{t}\right)\left\{\mu_{3}-\eta^{2}-\right.\right.$ $\left.\left.\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}\right\}(\mu-\mathrm{H})\right](\mathbf{9})$ with CO and PPh_{3}

The electron deficiency in compound 9 has been demonstrated by its reactions with CO and PPh_{3}. Treatment of 9 with CO (1 atm)

8b

Chart 1.
at room temperature leads to the quantitative formation of $\mathbf{8}$. Similarly reaction of 9 with PPh_{3} affords the adduct $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CNBu}^{t}\right)\left\{\mu-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}(\mu-\mathrm{H})\right] \quad\right.$ (10) in 56% yield. In order to establish the molecular geometry and in particular to obtain precise details on the disposition of the PPh_{3} and the isocyanide ligand, crystal structure analysis of $\mathbf{1 0}$ was undertaken. The asymmetric unit contains two chemically indistinguishable molecules and an ORTEP diagram of the molecular structure of one of these is shown in Fig. 4 and selected bond distances and angles are listed in the caption. The structure consists of an irregular triangle of osmium atoms $\{\operatorname{Os}(4)-\operatorname{Os}(5)=2.8723(6)$, $\quad \mathrm{Os}(5)-$ $\operatorname{Os}(6)=2.8877(5)$ and $\operatorname{Os}(4)-\operatorname{Os}(6)=2.9323(5) \AA \AA$, two of which ($\mathrm{Os}(4)$ and $\mathrm{Os}(5)$) are coordinated by three carbonyl ligands, while the other, $\mathrm{Os}(6)$, is coordinated by two carbonyls. The hydride ligand was not located in the X-ray experiment but from the lengthening of the $\operatorname{Os}(4)-\mathrm{Os}(6)$ edge, and from the opening out of the carbonyl ligands along this edge $\left\{\mathrm{C}(11)-\mathrm{Os}(4)-\mathrm{Os}(6)=115.8(3)^{\circ}\right\}$, it seems it is likely that it is located on the $\operatorname{Os}(4)-\operatorname{Os}(6)$ edge. The heterocyclic ligand bridges the same edge, as in $\mathbf{8}$, and is almost perpendicular to the Os_{3} plane, as shown by the $\mathrm{C}(60)-\mathrm{Os}(6)-$ $\mathrm{Os}(5)$ and $\mathrm{N}(3)-\mathrm{Os}(4)-\mathrm{Os}(5)$ angles of $91.4(2)$ and $90.2(2)^{\circ}$, respectively. The dihedral angle between the mean plane of the heterocyclic ligand and the plane of the three metal atoms is 85.2°. The ${ }^{t} \mathrm{BuNC}$ ligand is axially coordinated $\mathrm{Os}(5)$ and is oriented in the opposite side of the Os_{3} plane with respect to the heterocyclic ligand, similarly to $\mathbf{8}$. The PPh_{3} ligand occupies an equatorial coordination site and is located under the C-7 carbon of the heterocyclic ligand as in related complexes reported in literature [18,19].

The NMR spectrum indicates that compound $\mathbf{1 0}$ exists in four isomeric forms in solution (Chart 2) $[27,36]$. In the ${ }^{1} \mathrm{H}$ NMR spectrum the major isomer 10a (relative intensity $=0.89$) is assumed to have the solid-state structure and shows a hydride signal at δ $-11.15(\mathrm{~d}, J=16.4 \mathrm{~Hz})$. In addition, we observe three additional weak hydride resonances at $\delta-11.35(\mathrm{~d}, J=16.4 \mathrm{~Hz}),-12.41$ (d, $J=16.4 \mathrm{~Hz}$) and $-15.20(\mathrm{~d}, J=16.4 \mathrm{~Hz}$) (relative intensity $=0.03$, $0.03,0.05$). The equal and relatively large $J_{\mathrm{P}-\mathrm{H}}$ values are consistent

Fig. 4. Molecular structure of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{CNBu}^{t}\right)\left\{\mu-\eta^{2}-\mathrm{C}_{7} \mathrm{H}_{3}(2-\mathrm{Me}) \mathrm{NS}(\mu-\mathrm{H})\right]\right.$ (10) showing 50% probability thermal ellipsoids. Hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles (${ }^{\circ}$: $\operatorname{Os}(4)-\operatorname{Os}(5) 2.8723(6)$, $\operatorname{Os}(5)-$ $\mathrm{Os}(6) 2.8877(5), \quad \mathrm{Os}(4)-\mathrm{Os}(6)$ 2.9323(5), $\quad \mathrm{Os}(6)-\mathrm{C}(60) 2.161(10), \quad \mathrm{Os}(5)-\mathrm{C}(48)$ 2.058(12), Os(6)-P(2) 2.350(2), Os(4)-N(3) 1.169(8), C(48)-N(4) 1.121(13), C(49)$\mathrm{N}(4) 1.472(13), \mathrm{Os}(5)-\mathrm{Os}(4)-\mathrm{Os}(6) 59.657(14), \mathrm{Os}(4)-\mathrm{Os}(5)-\mathrm{Os}(6) 61.204(13)$, $\mathrm{Os}(5)-\mathrm{Os}(6)-\mathrm{Os}(4) \quad 59.139(14), \quad \mathrm{P}(2)-\mathrm{Os}(6)-\mathrm{Os}(5) \quad 167.73(6), \quad \mathrm{P}(2)-\mathrm{Os}(6)-\mathrm{Os}(4)$ 109.48(6), C(11)-Os(4)-Os(6) 115.8(3), N(3)-Os(4)-Os(5) 90.2(2), N(3)-Os(4)$\mathrm{Os}(6) \quad 83.9(2), \mathrm{C}(48)-\mathrm{Os}(5)-\mathrm{Os}(4)$ 91.5(3), C(60)-Os(6)-Os(5) 91.4(2), C(48)-$\mathrm{Os}(5)-\mathrm{Os}(6) 90.5(3), \mathrm{C}(48)-\mathrm{N}(4)-\mathrm{C}(49) 173.3(11), \mathrm{N}(4)-\mathrm{C}(48)-\mathrm{Os}(5) 171.7(9)$.

10d

Chart 2.
with our proposed structures for the isomers since the phosphine ligand is stereochemically equivalent relative to the hydride in all isomers [36]. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum also displays four singlets at $\delta 12.8,12.1,10.0$ and 0.5 (relative intensity $=0.05$, $0.89,0.03,0.03$). The infrared spectrum exhibits a strong absorption band at $2178 \mathrm{~s} \mathrm{~cm}^{-1}$ characteristic for terminally coordinated isocyanide ligand while the FAB mass spectrum shows the parent molecular ion peak at $m / z 1289$ and peaks due to sequential loss of eight terminal carbonyl ligands which are consistent with the solid-state structure.

4. Conclusions

In summary, reaction of the unsaturated cluster $\mathbf{2}$ with ${ }^{t} \mathrm{BuNC}$ gives the adduct $\mathbf{3}$ which on decarbonylation furnishes the unusual saturated cluster $\mathbf{4}$ in which both aromatic and aliphatic C-H bond activation has occurred. Similar reaction of the unsaturated cluster 7 with ${ }^{t}$ BuNC affords the addition product $\mathbf{8}$ which decarbonylates to give the unsaturated cluster $\mathbf{9}$. This difference is difficult to explain in the absence of detailed knowledge of the reaction pathway. Some feature of the substitution of the isocyanide for CO prevents the reformation of a three-center two-electron bond, involving two osmium atoms and the carbon atom of the orthometallated phenyl ring, in 4. In addition, decarbonylation of $\mathbf{6}$, the ${ }^{t}$ BuNC derivative of the decacarbonyl compound 1, also furnishes 4, again pointing to the special impact of this ligand on the formation of the 3 -center 2 -electron bonding mode. Subsequent reaction of the unsaturated cluster 9 with PPh_{3} again affords the saturated cluster $\mathbf{1 0}$ in which the phosphine ligand lies under the C-7 carbon of the heterocyclic ligand as in other related unsaturated triosmium clusters [18,19]. Thus, we conclude that isocya-nide-carbonyl replacement modifies the chemical behavior of the unsaturated cluster 2 while it has virtually no effect on that of the unsaturated cluster 7.

Supplementary material

CCDC 655913, 655914, 655915 and 673204 contain supplementary crystallographic data for $\mathbf{3}, \mathbf{6}, \mathbf{8}$ and 10 , respectively. These data may be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgements

A. K. R. gratefully acknowledges the University Grants Commission of Bangladesh for a scholarship and the Ministry of Education, Government of the People's Republic of Bangladesh for a study leave.

References

[1] R.D. Adams, H.D. Kaesz, in: D.F. Shriver (Ed.), The Chemistry of Transition Metal Complexes, Wiley, VCH, New York, 1991 (Chapter 4).
[2] G. Lavigne, B. de Bonneval, in: F.A. Cotton (Ed.), Bonneval, Catalysis by Di- and Polynuclear Metal Cluster Complexes, Wiley, VCH, New York, 1998.
[3] A.J. Deeming, Adv. Organomet. Chem. 26 (1986) 1. and references therein.
[4] S.E. Kabir, D.S. Kolwaite, E. Rosenberg, K.I. Hardcastle, W. Cresswell, J. Grindstaff, Organometallics 14 (1995) 3611.
[5] B. Bergman, R. Holmquist, R. Smith, E. Rosenberg, J. Ciurash, K.I. Hardcastle, M. Visi, J. Am. Chem. Soc. 120 (1998) 12818.
[6] E. Rosenberg, S.E. Kabir, M.J. Adedin, K.I. Hardcastle, Organometallics 23 (2004) 3982.
[7] J.A. Clucas, D.F. Foster, M.M. Harding, A.K. Smith, J. Chem. Soc., Chem. Commun. (1984) 949.
[8] J.A. Clucas, M.M. Harding, A.K. Smith, J. Chem. Soc., Chem. Commun. (1985) 1280.
[9] J.A. Clucas, P.A. Dolby, M.M. Harding, A.K. Smith, J. Chem. Soc., Chem. Commun. (1987) 1829.
[10] M.P. Brown, P.A. Dolby, M.M. Harding, A.J. Mathews, A.K. Smith, J. Chem. Soc., Dalton Trans. (1993) 1671.
[11] S.M. Azad, K.A. Azam, S.E. Kabir, M.S. Saha, G.M.G. Hossain, J. Organomet. Chem. 690 (2005) 4206.
[12] A.J. Deeming, M.M. Hassan, S.E. Kabir, E. Nordlander, D.A. Tocher, J. Chem. Soc., Dalton Trans. (2004) 3709.
[13] M.M. Harding, B. Kariuki, A.J. Mathews, A.K. Smith, P. Braunstein, J. Chem. Soc., Dalton Trans. (1994) 33.
[14] S.E. Kabir, A. Miah, L. Nesa, K. Uddin, K.I. Hardcastle, E. Rosenberg, A.J. Deeming, J. Organomet. Chem. 492 (1995) 41.
[15] D.F. Foster, J.H. Harrison, B.S. Nicholls, A.K. Smith, J. Organomet. Chem. 295 (1985) 99.
[16] S. Cartwright, J.A. Clucas, R.H. Dawson, D.F. Foster, M.M. Harding, A.K. Smith, J. Organomet. Chem. 302 (1986) 403.
[17] A.B. Din, B. Bergman, E. Rosenberg, R. Smith, W. Dastru', R. Gobetto, L. Milone, A. Viale, Polyhedron 17 (1998) 2975.

18] E. Rosenberg, M.J. Abedin, D. Rokhsana, A. Viale, W. Dastru', R. Gobetto, L. Milone, Inorg. Chim. Acta 334 (2002) 343.
[19] E. Arcia, E. Rosenberg, D.S. Kolwaite, K.I. Hardcastle, J. Ciurash, R. Duque, R. Gobetto, L. Milone, D. Osella, M. Botta, W. Dastru', A. Viale, J. Fiedler, Organometallics 17 (1998) 415.
[20] M.J. Abedin, B. Bergman, R. Holmquist, R. Smith, E. Rosenberg, J. Ciurash, K.I. Hardcastle, J. Roe, V. Vazquez, C. Roe, S.E. Kabir, B. Roy, S. Alam, K.A. Azam, Coord. Chem. Rev. 190-192 (1999) 975.
[21] (a) E. Rosenberg, D. Rokhsana, C. Nervi, R. Gobetto, L. Milone, A. Vile, J. Fiedler, M.A. Botavina, J. Organomet. Chem. 23 (2004) 215;
(b) C. Nervi, R. Gobetto, L. Milone, A. Vile, D. Rokhsana, E. Rosenberg, J. Fiedler, Chem. Eur. J. 9 (2003) 5749.
[22] R.D. Adams, N.M. Golembeski, Inorg. Chem. 18 (1979) 1909.
[23] R. Smith, E. Rosenberg, K.I. Hardcastle, V. Vazquez, J. Roh, Organometallics 18 (1999) 3519.
[24] S.E. Kabir, K.M.A. Malik, H.S. Mandal, M.A. Mottalib, M.J. Abedin, E. Rosenberg, Organometallics 21 (2002) 2593.
[25] S.T. Beatty, B. Bergman, E. Rosenberg, W. Dastru', R. Gobetto, L. Milone, A. Vile, J. Organomet. Chem. 593-594 (2000) 226.
[26] N. Begum, A.J. Deeming, M.K. Islam, S.E. Kabir, D. Rokhsana, E. Rosenberg, J. Organomet. Chem. 689 (2004) 2633.
[27] S.R. Hodge, B.F.G. Johnson, J. Lewis, P.R. Raithby, J. Chem. Soc., Dalton Trans. (1987) 931.
[28] SMART and SAINT software for CCD diffractometers, version 6.1, Madison, WI, 2000.
[29] G.M. Sheldrick, SHELXTL PLUS, version 6.1, Bruker AXS, Madison, W1, 2000.
[30] K.-L. Lu, H.-J. Chen, P.-Y. Lu, S.-Y. Li, F.-E. Hong, S.-M. Peng, G.-H. Lee, Organometallics 13 (1994) 585.
[31] M. Day, D. Espitia, K.I. Hardcastle, S.E. kabir, T. McPhillips, E. Rosenberg, Organometallics 12 (1993) 2309.
[32] K.A. Azam, M.B. Hursthouse, M.R. Islam, S.E. Kabir, K.M.A. Malik, R. Miah, C. Sudbrake, H. Varenkamp, J. Chem. Soc., Dalton Trans. (1998) 1097.
[33] N.K.K. Kazemifar, M.J. Stchedroff, M.A. Mottalib, S. Selva, M. Monari, E. Nordlander, Eur. J. Inorg. Chem. (2006) 2058.
[34] R.D. Adams, N.M. Golembeski, J. Am. Chem. Soc. 101 (1979) 2579.
[35] M. Day, D. Espitia, K.I. Hardcastle, S.E. Kabir, T. McPhillips, E. Rosenberg, R. Gobetto, L. Milone, D. Osella, Organometallics 12 (1993) 2309.
[36] M. Day, D. Espitia, K.I. Hardcastle, S.E. Kabir, T. McPhillips, E. Rosenberg, R. Gobetto, L. Milone, D. Osella, Organometallics 10 (1991) 3550.
[37] J. Akter, G.M.G. Hossain, S.E. Kabir, K.M.A. Malik, J. Chem. Crystallogr. 30 (2000) 773.
[38] N. Begum, U.K. Das, G.M.G. Hossain, M.I. Hyder, S.E. Kabir, Indian J. Chem. 44A (2005) 1988.

[^0]: * Corresponding author. Tel.: +880 406243 2592; fax: +880 4062432477.

 E-mail address: skabir_ju@yahoo.com (S.E. Kabir).

